New Contributions to Fractal Interpolation Theory

Cristina Maria Păcurar * joint work with Radu Miculescu † and Alexandru Mihail ‡ May 12, 2022

Abstract

We present a new fractal interpolation scheme. More precisely we consider $a,b \in \mathbb{R},\ a < b,\ A \subseteq \mathbb{R}$ such that $\{a,b\} \subseteq A = \overline{A} \subseteq [a,b]$ and $\overset{\circ}{A} = \emptyset$ and prove that for every continuous function $f:A \to \mathbb{R}$ there exist a continuous function $g^*:[a,b]\to \mathbb{R}$ such that $g^*_{|A}=f$ and a possible infinite iterated function system whose attractor is the graph of g^* . If A is finite we obtain the classic Barnsley's interpolation scheme and for $A = \{x_n \mid n \in \mathbb{N}\} \cup \{b\}$, where $x_1 = a$, $\lim_{n \to \infty} x_n = b$ and $x_n \in [a,b]$ for every $n \in \mathbb{N}$, we obtain a countable scheme due to N. Secelean. Our interpolation scheme permits A to be uncountable as it is the case of Cantor ternary set.

^{*}Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Iuliu Maniu Street, nr. 50, 500091, Braşov, Romania

[†]Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Iuliu Maniu Street, nr. 50, 500091, Braşov, Romania

 $^{^{\}ddagger}$ Faculty of Mathematics and Computer Science, University of Bucharest, Academiei Street 14, 010014, Bucharest, Romania