44th Summer Symposium in Real Analysis

Participant

Family name : Morawiec First name : Janusz Institution : University of Silesia Email : janusz.morawiec@us.edu.pl

Title of the talk

Invariant measures for uncountable random interval homeomorphisms

Coauthor(s)

Tomasz Szarek

Abstract

Fix a probability space (Ω, \mathcal{A}, P) and a function $f: [0, 1] \times \Omega \to [0, 1]$ such that for every $x \in [0, 1]$, the function $f(x, \cdot)$ is \mathcal{A} -measurable, and for every $\omega \in \Omega$, the function $f(\cdot, \omega)$ is an increasing homeomorphism of [0, 1] onto itself. Assume that for any $x \in (0, 1)$ there exists a set $\Omega_{-}^{x} \in \mathcal{A}$ such that $P(\Omega_{-}^{x}) > 0$ and $f_{\omega}(x) < x$ for every $\omega \in \Omega_{-}^{x}$, or for any $x \in (0, 1)$ there exists a set $\Omega_{+}^{x} \in \mathcal{A}$ such that $P(\Omega_{+}^{x}) > 0$ and $x < f_{\omega}(x)$ for every $\omega \in \Omega_{+}^{x}$. We give a necessary and sufficient condition for the iterated function system with probabilities $(\{f(\cdot, \omega) \mid \omega \in \Omega\}, P)$ to have exactly one invariant measure μ_{*} with $\mu_{*}((0, 1)) = 1$. We also investigate the properties of this iterated function system with probabilities.