STRONGLY SEPARATELY CONTINUOUS FUNCTIONS AND BOREL SUBSETS OF ℓ_p

OLENA KARLOVA 1,2

A notion of strongly separately continuous function of n real variables was introduced by Dzagnidze in [2] and studied in many papers (see [1, 3] and the literature given there).

Let $X_T = \prod_{t \in T} X_t$ be a product of family of sets X_t with $|X_t| > 1$ for all $t \in T$. If $S \subseteq S_1 \subseteq T$, $a = (a_t)_{t \in T}$ is a point of X_T and $x = (x_t)_{t \in S_1} \in \prod_{t \in S_1} X_t$, then x_S^a means a point $(y_t)_{t \in T}$ such that

$$y_t = \begin{cases} x_t, & t \in S, \\ a_t, & t \in T \setminus S. \end{cases}$$

In the case $S = \{s\}$ we will write x_s^a instead of $x_{\{s\}}^a$.

We say that a subset $A \subseteq X_T$ is *S*-open if

$$\{y = (y_t)_{t \in T} \in X_T : |\{t \in T : y_t \neq x_t\}| \le 1\} \subseteq A$$

for all $x = (x_t)_{t \in T} \in A$.

Let $X \subseteq X_T$ be an S-open set, \mathcal{T} be a topology on X and (Y,d) be a metric space. A function $f: (X, \mathcal{T}) \to Y$ is called *strongly separately continuous on* X or an *ssc-function* if

$$\lim_{x \to a} d(f(x), f(a_t^x)) = 0$$

for every $a \in X$ and $t \in T$.

In the talk we will discuss the discontinuity points set of ssc-functions and connection of ssc-functions with the box-topology of infinite products. Moreover, the problem of Baire classification of strongly separately continuous functions will lead us to a construction of an S-open subset of ℓ_p which belongs to the α 'th additive Borel class and does not belong to the α 'th multiplicative Borel class.

References

- [1] Činčura J., Šalát T., Visnyai T. On separately continuous functions f : l² → R, Acta Acad. Paedagog. Agriensis, XXXI (2004), 11–18.
- [2] Dzagnidze O. Separately continuous function in a new sense are continuous, Real Anal. Exchange 24 (1998-99), 695-702.
- Karlova O., Visnyai T. On strongly separately continuous functions on sequence spaces, J. Math. Analysis and Appl. (2016), 439 (1), 296–306.

 1 Jan Kochanowski University in Kielce, Poland; 2 Chernivtsi National University, Ukraine

Email address: o.karlova@chnu.edu.ua