44th Summer Symposium in Real Analysis

Participant

Family name : Ivanova First name : Gertruda Institution : Pomeranian University in Słupsk Email : gertruda.ivanova@apsl.edu.pl

Title of the talk

On lower density operators

Coauthor(s)

Elżbieta Wagner-Bojakowska, Władysław Wilczyński

Abstract

Let (X, τ_0) be a topological T_1 space and \mathcal{B} - Borel σ -algebra on (X, τ_0) . Let $\mathcal{P}(X)$ denote the power set of X. Fix a σ -ideal $\mathcal{I} \subset \mathcal{P}(X)$ containing all singletons such that $\mathcal{I} \cap \tau_0 = \{\emptyset\}$. By \mathcal{S} we will denote the σ -algebra generated by $\mathcal{B} \cup \mathcal{I}$. In this way we obtain a measurable space $(X, \mathcal{S}, \mathcal{I})$.

Let $\Phi : S \to 2^X$ be a *lower density operator* on S, i.e. for each $A, B \in S$, the following conditions are fulfilled:

- 1. $\Phi(\emptyset) = \emptyset$, $\Phi(X) = X$;
- **2.** if $A riangle B \in \mathcal{I}$, then $\Phi(A) = \Phi(B)$;
- **3.** $\Phi(A \cap B) = \Phi(A) \cap \Phi(B);$

4. $\Phi(A) \bigtriangleup A \in \mathcal{I}$,

where $A\Delta B$ is a symmetric difference of A and B.

If the pair $(\mathcal{S}, \mathcal{I})$ fulfills C.C.C. or for each $A \subset X$ there exists a measurable hull of A then the family

$$\tau_{\Phi} = \{ A \in \mathcal{S} : A \subset \Phi(A) \} = \{ \Phi(A) \setminus I : A \in \mathcal{S}, I \in \mathcal{I} \}$$

forms a topology on X (compare [1], [2]), called an abstract density topology generated by Φ .

By \mathcal{L} we denote family of all Lebesgue measurable sets. Symbols $\operatorname{Int}(A)$ and \overline{A} stand for the interior and closure of A with respect to τ_0 .

It is well known that if τ_0 is the Euclidean topology on the real line and Φ_d is the classical density operator then τ_{Φ_d} is the density topology τ_d (see [3]) and

$$\operatorname{Int}(A) \subset \Phi_d(A) \subset \overline{A} \tag{1}$$

for arbitrary $A \in \mathcal{L}$, so $\tau_0 \subset \tau_d$.

It seems to be interesting that for arbitrary lower density operator defined on \mathcal{L} the inclusions analogous to (1) are not necessary.

We consider two examples of lower density operators, for which the inclusions from (1) are not fulfilled. For this purpose the measure-preserving bijections on the real line are applied.

We also compare the operator Φ_f generated by measure-preserving bijection f with classical density operator Φ_d and prove that the symmetric difference $\Phi_f(A) \Delta \Phi_d(A)$ can be an uncountable set or set of the second category for some measurable A.

References

- J. Hejduk, R. Wiertelak, On the abstract density topologies generated by lower and almost lower density operators, Traditional and present-day topics in real analysis, University of Łódź (2013), 431–440.
- [2] J. Lukeš, J. Malý, L. Zajiček, Fine topology methods in real analysis and potential theory, Lecture Notes in Mathematics 1189, Springer-Verlag, 1986.
- [3] J. C. Oxtoby, *Measure and category*, Springer-Verlag, New York, 1971. E.J. Smith, J. Coauthor1, J. Coauthor2, *Title*, technical report, 2022.