44th Summer Symposium in Real Analysis

Participant

Family name : Ciesielski First name : Krzysztof Chris Institution : West Virginia University Email : KCiesiel@mix.wvu.edu

Title of the talk

Linearly continuous maps discontinuous on the graphs of twice differentiable functions

Coauthor(s)

Daniel L. Rodríguez-Vidanes

Abstract

A function $g: \mathbb{R}^n \to \mathbb{R}$ is *linearly continuous* provided its restriction $g \upharpoonright \ell$ to every straight line $\ell \subset \mathbb{R}^n$ is continuous. It is known that the set D(g) of points of discontinuity of any linearly continuous $g: \mathbb{R}^n \to \mathbb{R}$ is a countable union of isometric copies of (the graphs of) $f \upharpoonright P$, where $f: \mathbb{R}^{n-1} \to \mathbb{R}$ is Lipschitz and $P \subset \mathbb{R}^{n-1}$ is compact nowhere dense. On the other hand, for every twice continuously differentiable function $f: \mathbb{R} \to \mathbb{R}$ and every nowhere dense perfect $P \subset \mathbb{R}$ there is a linearly continuous $g: \mathbb{R}^2 \to \mathbb{R}$ with $D(g) = f \upharpoonright P$. The goal of this talk, based on [1], is to show that this last statement fails if we do not assume that f'' is continuous. More specifically, we show that this failure occurs for every continuously differentiable function $f: \mathbb{R} \to \mathbb{R}$ with nowhere monotone derivative, which includes twice differentiable functions f with such property. This generalizes a recent result from [3] of professor Luděk Zajíček and fully solves a problem from [1].

References

- K.C. Ciesielski, T. Glatzer, Sets of discontinuities of linearly continuous functions, Vol. 38, No. 2, pp. 377–389, 2013.
- [2] K.C. Ciesielski, D.L. Rodríguez-Vidanes, *Linearly continuous maps discontinuous on the graphs of twice differentiable functions*, submitted, 2022.
- [3] L. Zajíček, On sets of discontinuities of functions continuous on all lines, preprint of January 3, 2022, available at arxiv.org.