44th Summer Symposium in Real Analysis

Alikhani-Koopaei, Aliasghar Department of Mathematics, Berks College, Pennsylvania State University, Reading, Pennsylvania 19610-6009, USA. email: axa12@psu.edu

On Dynamics of families of Equi-Baire one functions on metric spaces

Abstract

Let (X, ρ) be a compact metric space. The set $B_1(X, X)$ denotes the collection of all Baire one self-maps of X. In [2], we introduced the concept of Equi-Baire one as a generalization of equicontinuity for families of Baire one functions. Let (X, ρ_1) , (Y, ρ_2) be two metric spaces, we say the family $\mathcal{F} \subset B_1(X, Y)$ is equi-Baire one at x_0 , if for all $\epsilon > 0$ there exists a function $\delta: X \to \mathbb{R}^+$ such that

 $\rho_2(f(x), f(x_0)) \leq \epsilon$ for all $f \in \mathcal{F}$, if $\rho_1(x, x_0) < \min\{\delta(x), \delta(x_0)\}$, and

 \mathcal{F} is equi-Baire one if for all $\epsilon > 0$, there exists a function $\delta : X \to \mathbb{R}^+$ such that for all x and y in X,

$$\rho_2(f(x), f(y)) \le \epsilon \text{ for all } f \in \mathcal{F}, \text{ if } \rho_1(x, y) < \min\{\delta(x), \delta(y)\}.$$

First we discuss the concept of equi- B_1 and provide some intersting examples related to this concept. Let \mathcal{K} be the class of compact subsets of a metric space (X, ρ) , furnished with the Hausdorf metric. Here, we also study the dynamics of the limit function of a sequence of functions $\{f_n\}_{n=1}^{\infty} \subset bB_1$ and show that for a typical function $f \in B_1(I, I)$, the family $\{f^n\}_{n=1}^{\infty}$ is an equi- B_1 family and the map $\omega_f : X \to \mathcal{K}$ defined by $\omega_f(x) = \omega(x, f)$ is Baire one on I. We also show that the set of sequences that converge uniformly on X denoted by $\mathcal{F}_u(X)$, the set of sequences that are equi- B_1 denoted by $\mathcal{F}_{eq}(X)$, and the set of sequences that are point-wise convergent on X to some $f \in B_1$ denoted by $\mathcal{F}_{p.w.}(X)$ are all closed subset of \mathcal{F} ; and $\mathcal{F}_u(X) \subsetneqq \mathcal{F}_{eq}(X) \subsetneqq \mathcal{F}_{p.w.}(X)$. Note that for two complete separable metric spaces X and Y:

• If $\{f_n\} \subset B_1(X, I)$ is a sequence that converges uniformly to f on X. Then the sequence $\{f_n\}_{n=1}^{\infty}$ is an equi- B_1 family.

• The pointwise limit of a sequence of Equi-Baire one functions from X to Y is a Baire one function.

References

- Aliasghar Alikhani-Koopaei, Equi-Baire one family of functions on metric spaces; A generalization of equi-continuity; and some applications. Topology Appl. 277:107170,11,2020.
- [2] Aliasghar Alikhani-Koopaei, On chain recurrent sets of typical bounded Baire one functions. Topology Appl. 257 (2019), 1-10.
- [3] Aliasghar Alikhani-Koopaei, On the sets of fixed points of bounded Baire one functions. Asian-Eur. J. Math. 12 (2019), no. 3, 1950040, 10 pp.
- [4] A. M. Bruckner, J. Ceder Chaos in terms of the map $x \to \omega(x, f)$. Pacific J. Math. 156 (1992), no. 1, 63-96.
- [5] D'Aniello; S. Elaydi, The structure of ω-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete Contin. Dyn. Syst. Ser. B 25 (2020), no. 3, 903-915.
- [6] Emma D'Aniello, T. H. Steele, Chaotic behaviour of the map x → ω(x, f). Cent. Eur. J. Math. 12 (2014), no. 4, 584592.
- B. Hanson, P. Pierce, T. H. Steele, Dynamics of typical Baire-1 functions on a compact n-manifold. Aequationes Math. 93 (2019), no. 6, 1111-1125.
- [8] Peng-Yee Lee, Wee-Kee Tang, and Dongsheng Zhao, An equivalent definition of functions of the first Baire class, Proc. of the Amer. Math. Soc., vol. 129, no. 8, 2273-2275.

 D. Zhao, Functions whose composition with Baire class one functions are Baire class one. Soochow J. Math. 33(2007), 543–551.